references
·
INVeSTIGACIÓN Y
deSARRollo
·
ce of concentration and temperature on the formation of γ-oryzanol + β-sitosteroltubulesinedibleoilorganogels. Food Biophys 6:20-25. [119] Rogers MA, Bot A, Lam RSH, Pedersen T, May T (2010) Multi-component hollow tubules formed using phytosterol and γ-oryzanol based compounds: an understanding of their molecular embrace. J Phys Chem A 114: 8278-8285. [120] Bot A, Adel R den, Regkos C, Sawalha H, Venema P, Flöter E (2011) Structuring inβ-sitosterol+γ-oryzanol-basedemulsion gels during various stages of a temperature cycle. Food Hydrocolloids 25:639-646. [121] Rogers MA, Wright AJ, Marangoni AG (2009) Oil organogels: the fat of the future. Soft Matter 5:1594-1596. [122] Imokawa G, Abe A, Jin K, Higaki Y, Kawashima M, Hidano A (1991) Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin?. J Invest Dermatol 96:523-526. [123] Selzner M, Bielawska A, Morse MA, Rüdiger HA, Sindram D, Hannun YA, Clavien PA (2001) Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer. Cancer Res 61:1233-1240. [124] Zhang L, Hellgren LI, Xu X (2006) Enzymatic production of ceramide from sphingomyelin. J Biotechno 123:93-105.
[125] Raudenkolb S, Wartewig S, Neubert RH (2003) Polymorphism of ceramide 3. Part 2: a vibrational spectroscopic and X-ray powder diffraction investigation of N-octadecanoyl phytosphingosine and the analogous specifically deuterated d35 derivative. Chem Phys Lipids 124:89-103. [126] Rogers MA (2011) Ceramide Oleogels. In: Marangoni AG, Garti N (eds) Edible Oleogels: Structure and Health Implications. AOCS Press, Urbana, Illinois, pp 221-234. [127] Pernetti M, Malssen KF van, Kalnin D, Flöter E (2007) Structuring edible oil with lecithin and sorbitan tri-stearate. Food Hydrocolloids 21:855-861. [128] Murdan S, Gregoriadis G, Florence AT (1999) Novel sorbitan monostearate organogels. J Pharm Sci 88:608-614. [129] Shchipunov YA (2001) Lecithin organogel – A micellar system with unique properties. Colloids Surf A 183/185:541-554. [130] Scartazzini R, Luisi PL (1988) Organogels from lecithins. J Phys Chem 92:829-833. [131] Dey T, Kim DA, Marangoni AG (2011) Ethylcellulose oleogels. In: Marangoni AG, Garti N (eds) Edible Oleogels: Structure and Health Implications. AOCS Press, Urbana, Illinois, pp 295-311. Laredo T, Barbut S, Marangoni AG (2011) Molecular interactions of polymer oleogelation. Soft Matter 7:2734-2743. [132] Laredo T, Barbut S, Marangoni AG
(2011) Molecular interactions of polymer oleogelation. Soft Matter 7:2734-2743. [133] Mezzenga R (2011). Protein-templated oil gels and powders. In: Marangoni AG, Garti N (eds) Edible Oleogels: Structure and Health Implications. AOCS Press, Urbana, Illinois, pp 271-293. [134] Shaw LA, McClements DJ, Decker EA (2007) Spray-dried multilayered emulsions as a delivery method for omega-3 fatty acids into food systems. J Agric Food Chem 55:3112-3119. [135] Romoscanu A, Mezzenga R (2005) Cross linking and rheological characterization of adsorbed protein layers at the oilwater interface. Langmuir 21:9689-9697. [136] Romoscanu AI, Mezzenga R (2006) Emulsion-templated fully reversible protein-in-oil gels. Langmuir 22:7812-7818. [137] Buzza DMA, Lu CYD, Cates ME (1995) Linear shear rheology of incompressible foams. J Phys II 5:37-52. [138] Mezzenga R, Ulrich S (2010) Spraydried oil powder with ultrahigh oil content. Langmuir 26:16658-16661. [139] Libster D, Aserin A, Garti N (2011) Oleogels based on non-lamellar lyotropic liquid crystalline structures for food applications. In: Marangoni AG, Garti N (eds) Edible Oleogels: Structure and Health Implications. AOCS Press, Urbana, Illinois, pp 235-269 n
148
A&G 90 • Tomo XXIII • Vol. 1 • 132-148 • (2013)