Advantages and disadvantages of different analytical techniques used to determine chloropropanols in food lipid matrices

Justyna Gromadzka
Agnieszka Głowacz, Renata Jędrkiiewcz
Gdańsk University of Technology
Department of Analytical Chemistry
Poland in the World
Poland in numbers

- area: 312 679 km²
- population: 38.5 mln
- capital: Warszawa
- time zone: GMT +1

The Baltic Sea coast

The Tatra Mountains
Gdańsk

- over 1 000 year-old city,
- an important part of Baltic Europe,
- represents the traditions of the Hanseatic League, a medieval association for the promotion and protection of trade,
- world capital of amber,
- **fall of communism** – road to freedom,
- city of **famous people**: Farenheit, Heweliusz, Schopenhauer, Gunter Grass, Lech Wałęsa
Short agenda

• theoretical background,
• analytical aspects,
• application of the SPME technique,
• results.
Theoretical background
What’s are chloropropanols?

- chloropropanols = chlorohydrins,
- heat-induced food contaminants,
- appears in free and esterified (bound) form,
- the most popular: 3-MCPD, 2-MCPD, 1,3-DCP
- toxicity:
 - genotoxic in vivo studies,
 - carcinogenic in vivo studies (nephrotoxicity, antiferility effects).
Chloropropanols precursors

CHEMICALS
- chloride ions,
- glycerol,
- tri-, di- and monoacylglycerols

PROCESSING
- temperature,
- pH,
- hydrolytic enzymes
History

- Discovery of 3-MCPD: 1978
- Discovery of 3-MCPD-E: 1980
- Setting TDI (EU Scientific Committee on Food): 2001
- Development of new analytical methods: 2001-2015

- GC-MS
- 2 µg/kg bw
- Intensive toxicological research

Justyna Gromadzka
Chloropropanols in food lipids

- edible vegetable oils,
- margarines,
- infant milk formulas and human breast milk,
- fish oils, fish liver oils and encapsulated oils,
- thermally treated food rich in fats.
Analytical aspects
ANALYTICAL PROBLEMS

- LACK OF CHROMOPHORE
- HIGH POLARITY
- LOW MOLECULAR WEIGHT
- COMPLEX MATRIX
- HIGH BOILING POINT

CHALLENGE FOR ANALYTICAL CHEMIST
Analytical approach

DIRECT

- Sample preparation
- LC-MS analysis
- Remove of interfering matrix components

INDIRECT

- Sample preparation
- Hydrolysis
- I Extraction
- II Extraction
- Derivatisation
- GC-MS analysis
- Addition of deuterated internal standards
- Addition of derivatisation reagent
- Remove of interfering lipid components

Justyna Gromadzka
Direct vs Indirect Determination

<table>
<thead>
<tr>
<th>DIRECT</th>
<th>INDIRECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>no side reactions,</td>
<td>possible analytes conversion,</td>
</tr>
<tr>
<td>precise information,</td>
<td></td>
</tr>
<tr>
<td>determination of single esters –</td>
<td>few analytical standards,</td>
</tr>
<tr>
<td>lots of analytical standards,</td>
<td>simple matrix removal,</td>
</tr>
<tr>
<td>high cost of single analysis,</td>
<td>easy separation,</td>
</tr>
<tr>
<td>matrix removal needed,</td>
<td>multi-step sample preparation,</td>
</tr>
<tr>
<td>nearly no sample preparation step,</td>
<td>time consuming and laborious,</td>
</tr>
<tr>
<td>problematic – equipment damage, ion source contamination,</td>
<td>derivatization reaction required,</td>
</tr>
<tr>
<td>LC-MS</td>
<td>GC-MS</td>
</tr>
</tbody>
</table>

Justyna Gromadzka
Most popular indirect methods

<table>
<thead>
<tr>
<th>Method name</th>
<th>“improved Unilever”</th>
<th>DGFC-VI 18 (10)</th>
<th>SGS 3 in 1</th>
<th>“enzymatic”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Ermacora & Hrncirik</td>
<td>Kuhlmann</td>
<td>Kuhlmann</td>
<td>Miyazaki et al.</td>
</tr>
<tr>
<td>Year</td>
<td>2013</td>
<td>2010</td>
<td>2011</td>
<td>2012</td>
</tr>
<tr>
<td>Hydrolysis</td>
<td>Slow acidic</td>
<td>Fast alkaline</td>
<td>Slow alkaline</td>
<td>enzymatic</td>
</tr>
<tr>
<td>Hydrolysis agent</td>
<td>H$_2$SO$_4$ in MetOH</td>
<td>NaOH in MetOH</td>
<td>Triacylglycerol lipase from Candida rugosa</td>
<td></td>
</tr>
<tr>
<td>Time and temp. of hydrolysis</td>
<td>16 h, 40 °C</td>
<td>3-5 min, RT</td>
<td>16 h, -25 °C</td>
<td>30 min, RT</td>
</tr>
<tr>
<td>Hydrolysis stopping agent</td>
<td>NaHCO$_3$</td>
<td>NaBr acid solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derivatisation</td>
<td>PBA, 15 min, RT, ultrasound bath</td>
<td></td>
<td>PBA, 20 min, 85 °C</td>
<td></td>
</tr>
<tr>
<td>Organic solvents</td>
<td>3 mL THF</td>
<td>100 µL t-BME</td>
<td>600 µL diethyl ether</td>
<td>200 µL octane</td>
</tr>
<tr>
<td></td>
<td>8.5 mL heptane</td>
<td>1.2 mL hexane</td>
<td>6 mL hexane</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8 mL diethyl ether/ethyl octane</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 µL octane</td>
<td>3 mL hexane</td>
<td></td>
</tr>
<tr>
<td>Total sum of the organic solvents</td>
<td>11.5 mL</td>
<td>3.6 mL</td>
<td>4.1 mL</td>
<td>11 mL</td>
</tr>
</tbody>
</table>
SGS „3 in 1”

- developed by Jan Kuhlmann in 2011,
- first published methods which allows to simultaneous determination of 3-MCPD, 2-MCPD and glycidol,
- mild condition of transesterification 16h at -25°C,
- derivatisation with PBA,
- detection and identification with GC-MS

Oil sample
- Add diethyl ether
- Add internal standard

Ester cleavage
- Freezing for 30 min at -22 to -25°C
- Add methanolic sodium hydroxide
- Freezing for 16 h at -22 to -25°C
- Add acidified sodium bromide solution
- Concentration under gentle stream of nitrogen
- Washing with iso-hexane

Organic layer
- Extraction with a mixture of diethyl ether/ethyl acetate
- Drying with anhydrous sodium sulphate

Derivatization
- Add PBA
- Ultrasound 15 min at RT
- Concentration under gentle stream of nitrogen

GC-MS Analysis

Reference:

Research Article

Determination of bound 2,3-epoxy-1-propanol (glycidol) and bound monochloropropanediol (MCPD) in refined oils

Jan Kuhlmann

Ju: SGS Germany GmbH, Hamburg, Germany
Enzymatic 3 in 1

- method developed by Miyazaki and co-workers in 2012,
- first apply to determine 3-MCPD,
- collaborative study within 13 laboratories of Japan Oil Chemists’ Society,
- simultaneous enzymatic hydrolysis and bromination step,
- derivatisation with PBA,
- detection and identification with GC-MS
Sample preparation

SPME
Alternative methods of isolation

- **HS (headspace analysis):**
 - isolation of 1,3-DCP and glycidol in soya sauces,

- **SPME:**
 - isolation of 1,3-DCP (PA fiber) and than derivatization and isolation of 3-MCPD (PDMS fiber),
 - simultaneously isolation of 1,3-DCP and 3-MCPD (PA fiber) with on fiber derivatization mode.
SPME in on-fiber derivatisation mode

Advantages:
• simplification
• shortened time
• reduced matrix interference

Loses of analytes ➔ enrichment of analytes

Justyna Gromadzka
Derivatisation agents

\[
\begin{align*}
\text{Cl-} & \quad \text{OH} \\
\text{Cl-} & \quad \text{OH} \\
\text{F}_3\text{C} & \quad \text{N} & \quad \text{Si(CH}_3\text{)}_3 \\
\text{F}_7\text{C}_3 & \quad \text{N} & \quad \text{Si(CH}_3\text{)}_3 \\
\text{O} & \quad \text{Si(CH}_3\text{)}_3
\end{align*}
\]
Different fiber coatings

DVB/CAR/PDMS

PEG

PA
SPME with ionic liquids phase

1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4MIM][TFSI])

Problems to be solved: increase fiber lifetime in derivatisation conditions
Results
Margarines

The graph shows the concentration of 2-MCPD and 3-MCPD in five different samples of margarines (M_1 to M_5). The concentration is measured in mg/kg. Sample M_5 has the highest concentration of both 2-MCPD and 3-MCPD.
Infant formulas

<table>
<thead>
<tr>
<th>Concentration [mg/kg]</th>
<th>IF_1</th>
<th>IF_2</th>
<th>IF_3</th>
<th>IF_4</th>
<th>IF_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-MCPD</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>3-MCPD</td>
<td>2.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

2-MCPD

3-MCPD

Poster session
Analytics, Quality and Safety
Poster No CFP 092R

Justyna Gromadzka

Determination of MCPD fatty acid esters
in lipid fractions of retailed infant formulas
Renata Jedzkiewicz, Agnieszka Glowacz, Justyna Gromadzka, Jacek Namieśnik
Fish oils

2-MCPD 3-MCPD

Poster session
Analytics, Quality and Safety
Poster No CFP 089R

Lipid Oxidation and antioxidants
Poster No CFP 090R
Justyna Gromadzka
Vegetable oils

Poster session
Analytics, Quality and Safety
Posters No CFP 070R
and CFP 091R

Justyna Gromadzka
Chloropropanols in different lipids

- Refined edible oils
- Margarines
- Fish oils
- Infant formulas

Concentration [mg/kg]

- 2-MCPD
- 3-MCPD
DGF C-III 17 vs SGS „3 in 1” method

3-MCPD concentration [mg/kg]

Margarine 1 Margarine 2 Margarine 3 Margarine 4 Margarine 5 Rapeseed oil

3 in 1 method
DGF method

Justyna Gromadzka
Take home message

CHLOROPROPANOLS

Chaos in toxicological data

New promising analytical techniques

Presents in food lipids
Research TEAM

Agnieszka Głowacz, PhD Eng

Renata Jędrkiewicz, MSc Eng

Justyna Gromadzka, PhD Eng

Prof. Jacek Namieśnik
Acknowledgements

This research was financially supported by the National Centre for Research and Development within „LIDER” project (grant No. 11/171/L-3/11/NCBR/2012)
Thank You

for Your kind attention